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ABSTRACT

This paper has two objectives. The first objective iz to formulate a 3-dimensional Finite
Element Model for the dynamic analysis of helicopter rotor blades. The second objective is
to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is
parallel and scalable, for the solution of the 3-D) FEM analysis. The numerical and parallel
scalability of the solver is studied using two prototype problems — one for Ideal hover {sym-
metric) and one for a trapsient forward flight {(non-symmetric) — both carried oul on up to 48
processors. In both hover and forward flight conditions, a perfect linear speed-up is observed,
for a given problem size, up to the point of substructure optimality. Substructure optimality
and the linear parallel speed-up range are both shown to depend on the problem size as well
as on the selection of the coarse problem. With a larger problem size, linear speed-up is
restored up to the new subtructure optimality, The solver alse scales with problem size —
even though this conclusion is premature given the small prototype grids considered in this

study.

INTRODUCTION

One hundred years age what is now called the
Potnearé-Steldov operator was infroduced. This oper-
ator, which governs the interface of a problem generated
by decomposing a larger problent into many smaller sub-
problems, have spectral properties that are superior o
the original problem. In partleslar, s condition num-
ber grows ab a rate that is an order lower than that of
the original problem. Every modern method of Herative
suhstructuring is based on one or many variational forms
of this operator.
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The word substructuring and the method was intro-
duced Bfty vears ago by Preemieniecki [1, 2l Together
with Denke [3], Argyris and Kelsey [4], and Turner et
al B}, they laid the foundations of displacement and force
fintte element analysis of partitioned structures. These
partitionad methods were the only avenues to oblain re-
sults for practical struciures for which the original prob-
lom far exeeded the capacity of computers at the time.
The method of substructures have remained the fastest
{time), most efficient (memaory), most refiable laccurate),
and most fexible (heterogenous physics and properties)
method of partitioned analysis of large scale structures.
The modern methods of primal and dual ferative sub-
struchuring have their origin and genesis in these original
eontributions - established long before the advent of par-
allel computers.

The advent of paralle! computers opened opportu-



nity for solving each partitioned substructure in a sepa-
rate processor. A straighi forward Implementation, how-
ever, leads to & dead end. First, the high condition num-
ber and lack of sparsity of the interface equation by iself
poses & sigoificant challenge for convergence. Second,
the total interface size grows both with problem size and
with partitions, producing a dramatic increase in the re-
quired number of Herations. The recognition, that a B
nite element representation of the substructure interface
is precisely a discrete equivalent of the oviginal Podnoaréd.
Stekloy operator, allows the mathematical theories of do-
main decomaposition to be brought to bear directly to-
wards the resolution of this key problem. Today, pro-
cedures are available which preconditions the interface
and solves it iteratively, in a pavallel and scalable man-
ner, requiring only loeal substructire caleulations. These
procedures are called #terative substructuring methods.
Their shjpetive is to provide epfimal mumerical scala-
biltby, Le. to ensure that the condition number of the
pre-conditionsd interface does not grow with the number
of substructures and grows at most polylogarithmically
with mesh refinement within each substructure.

The mathematical theory of domain decompostiion
provides scalable algorithms for fwo broad classes of par-
titioning: overlapping and non-overlapping 61 The over-
lnpping partitioning leads to edditeve Schuwarz methods,
which are varianis of bodk Jacobi preconditioners. These
are widely used in fluid mechanics, but are of little or no
tmportance in structural mechanics — due to the very
high condition numbers {16% — 10') and high bandwidth
of practical structures. Structural mechanics use non-
overlapning partitioning. They lead to lterative substruc-
turing methods, a name borrowed from, and as explaned
carlier, indicative of the deep ronnections to the long and
successful tradition of substructuring.

The growth of the mathematical theory of itera-
tive substructuring can be traced to the seminal work
of Agoshkov et al. [7, 8] and Bramble et al. {9 in the
mic-1980s.  The former provided a deiailed analysis
of the Poincaré-Steklov operator. The latier provided
one of the earlest scalable interfane preconditioners for
s Z2-nd order elliptic problem with homogenons coeffi-
cients. Subsequent algorithmic developrments in this area
have continued through the 1990s and 2000s {the inter-
ested reader is referred to monographs by Quarteroni and
Vali [100 and Toselli and Widlund {11} eulminating in
the increasing application of these methods for High Per-
formance Computing (HPC) based large seale problems
of computational mechanies [12, 13]. Today, Neumann-
Neumann type balancing methods known as Balane-
ing Domain Decomposition with Constraints (BDDCO)
{see [14] and references therein} and the Dirichlet-
Dhirichlet tvpe dual methods known as Finite Floment
Tearing and Integration {FETT}) methads (see [I5] and
references therein) provide scalable preconditioners shat
are optimal for up to 4-th order problems that include
highly discontinuous and heterogenous subdomalns,

Both the Neumann-Neumann snd FETT methods
act on the discrete eguivalents of the Poincard-Sleklon

interface operator. The former acts on is primal form.
The latter acts on its dusl form {explained later). Both
are based on dimultaneous Divichlet and Neumann solves
within each substructure - one for preconditioning and
one for residugl caleulation ~ only in reverse order to
one ancther. Note that the Neumann solves — which lle
at the heart of these methods — are non-invertible for
floating substructures that arise vaturally from mubtiple
partitioning of a strocture. In Neumann-Neomann, this
singularity ocours in the preconditionsr, in FETT this sin-
gularity occurs In the residual caleulation,

The primary objective of this paper s to apply an
advanced multi-level FETT method, the FETEDual Pri-
mal {DP) method, pioneered by Parhat ot al. {15, 18], for
the parallel solution of a large scale rotary wing strue-
tural dynamics preblem.  The FETLDP method acts
both on the primal and dual form of the interface - ench
on a separate portion of the interface. We apply this
method in the present work because there i a substan-
tial volurae of published literature deronstrating its high
fevel of performance for large scale englneering problems
{sew veferences above). Note, however, that both the
FETI-DP and the BDDC methods are closely connected,
and we refer the interested reader 1o the recent work of
Mandel et al [17] for an excellent exposition of this con-
nection.

The state-of-the-art in rotary wing stroctural model-
ing involver a variational-asyrnpiotic reduction of the 303
nonlinear elasticity problem into a 2B linear cross-section
analysis and a 1D geomstrically exact beam analyvsis -
based on Berdichevsky [18] and ploneered by Hodzes and
his coworkers [19].  Aeroslastic computations are per-
formed on the beam, followed by & recovery of the 3D
stregs field, The method is efficient and accurate — except
near end-edges and discontinuities for which a 3-I) analy-
sis is still needed - as long as the cross-sections are small
compared to the wavelength of deformations along the
beam. Meodern hingeless and bearingless configurations
contain 3-I¥ flexible lnad bearing components near the
raot that have short aspect ratios and cannot be treated
as beams. Moreover, treatment of blades, depending on
their advanced geometry and material anisotropy, also
requires continuous improvements based on refinements
to the asymptotie cross-section analysis {20, 21, 22,

A second ohjective of thiz paper, therefore, is to de-
velop a 3-13 FEM analysis for rotary wing struchures that
can be uged to analyze generie, 3-13, non-beam Hke hubs
as well as advanced geometry blade shapes. With the
emergence of rotoreraft CFE physies-based models con-
saining millions of grid points can carry out RANS com-
putations neing 10075 of cores, routinely, In 8 research
environment for the rotor, and even for the entire heli-
eopter. Current research 18 focused today on coupling be-
tween CFD and relatively simple engineering-level rotor
sirpctural dvnamics. The purpose of the second ohjec-
sive of this paper, therefore, Is to explore the possthifily
of integrating 31 FEM as the physics-based madel in the
CSI domaln.

A 3D FEM analvsis will provide enabling techniol-




ogy for modeling advanced hingeless and bearingless ro-
tors, [ will provide enabling technology for calenlating
the sivesses and straing directly on the critical load bear-
ing components near the hub, It will provide a1 model
that iz a true representation of the 3D structure, con-
sistent with the high fAdelity sought in large scale CFD
computations, Thus, this research i primarily targetted
towards large-seale, high-fdelity, HPC based comprehen-
give rotoreralt simalations. However, as a by-product, it
will still provide a means for extracting 2-D sectional
properiies for generic structures, with which lower -
delity analysis can always be carried out. There s no
guestion that such a capability will be powerful. The
question is that of an efficient solution procedure. As in
CFED, the tremendous capabilities of HPC is also envi-
sionad here to be the key technology driver and enabley.
The primary obiective of this paper I8 therefore to ad-
dress this key challenge directly.

Scope of Present Work

A 3-D FEM analysis for rotary wing dynarics is de-
veloped with emphasie on identifying the inertial ferms
that are unigue to rotors, The 3-D FEM sclver is then
used to implement and analyze a parallel Newton-Krviov
solver developed using the FETT-DP method of iterative
substructuring. This solver s equipped with a General-
wwed Minbmom Hesidual (GMRES) update, in addition
to its traditional UG based update, to accomodate the
nonsyrometric nature of rotary wing d&n.&mic» Hcmfewr

demfed for this ﬁ.{)mfgmmetrzc opemmr.

Advanced finite element capabilities like locking free
elements, hierarchical elements, nonlinear constitutive
models, composite ply modsling are bevond the scope
of this inttial work., Grid generation is not part of this
endeavor. Simple grids ave constructed that are adequate
for research purposes. Domain partitioning, on the other
hand, is a part of this work. Standard graph partition-
ers that are readily available will not suffice, for ressons
described herein. Mowt key elements of 2 wmprebeﬂs;xe
rotorcraft analvsis are not considered at present: aivloads
model, trim model, extraction of periodic dynamics, and
multi-body dynamics, are all part of future work.

The paper is organized as follows. The second seo-
tion describes the formulation of 3D Finite Element
Maodeling (FEM) for rotors, followed by preliminary ver
ification using thin plate and rotating beam results. The
third section presents a brief description of the iterative
substructuring alporifthm and its parallel implementa-
tion. The numerical scalability of the algorithm is estab-
lished in this section. The fourth section infroduces the
Loy components of the 3D FEM analysis gecinetry and
grids, partitioning and corner selection, the hover pro-
totype, and the transtent forward flight prototype. The
fifth section is focussed on sealability, Analyses were per-
formed on up to 48 processors ~ the maxbmum available
to the anthors st present. The paper ends with the key
conclusions of this work, and & summary of the future

research divections that are critical Lo Lhe success of this
endeavour.

3D PINITE ELEMENTS FOR ROTORS

The Finite Element formulation is based on well es-
tablished, standard procedures [23, 24].
geomebrically exact implementation, follows Incremen-
tal approach, using Green-Lagrange strain and Second
Piola-Kirchoff stress measures, within a total Lagrangian
forradation, The main contribution here is on ideniify-
ing the inertial terms that are unique to rotorcraft,

The non-linear,

Strain energy

Lot the deformed coordinates of & material point in
the blade at sury instant be glven by

2y =27 by 0¥ ol 2D
g sl 4+ uplzl, a2 {n

wy = 2 +ugle, 5, 2D

where z{ and u,, ¢ = 1,2, 5 denote the undeformed coor-
dinates and the 31 deformation field respectively. The
deformation gradient of the point with respect to its up-
deformed configuration is then X,

iy

where 50 &
3
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The Green-Lagrange strain relates the deformed length
of & line element, d!, {o Hyg original length on the unde-
formed blade, di¥, in the following manner

€15 dy ffg&‘ o= { i= 2 }Eldi? f(iif‘é\z‘

where (d])® = da; da; and (AN = d 2;d ;. The Green-

Lagrange strain tenmor follows
€= {1/ - 1)

where (7 sreen: deformation tensor

given by

is the left Cauchy-

C=XI X,

The elements of the Green-Lagrange strain tensor have
the well-known form

U f Gus Bug  Fuy Ou . .
€% = § o ; ! f'} + i EB=1,23 (3
T2\ dx da al Jaf

The Total Lagranglan formulation is based on virtual
work per wikt origing volume. The stress measure that
s energetically conjugate to Green-Lagrange strain is the
second Piola-Kirchhoff stress tensor, . That is, the
strain energy of the deformed structure can now be cab
culated using the above strain and stress measures with
integration over original volume. The variation in strain
energy is then shmply

S = / o ey dV (43
v



For non-linear analysis, an incremental procedure s [ol-
lowed. The varistion in strain energy in the current state
s exprossed in terme of incremental deformations mea-
sured from & previous known state. [t must be under-
stood that the variation in strain in the current state is
simply the variation in incremental strains, That is,

5(;3{3 B ﬁi} e (SL).\..{’W {;}
where 2eg s the incremental strain

o E -+ ALY

= gy {E}T.}»f;} ({5}

The incremental strain is related to the incremental de-
formations Awy. They are defined as follows

a8y = 2f +wl1)
it Ay = 2P Lt AL
il?;lg = I;tff + _Xﬁ} - Ifilit:! = '{,i,(ﬁ -+ :Si} e ui{':‘,"}'

Substitution of the strain expression 4 in 6 and use of

u{d + ALY = w{ty + Ay gives

rd P p R
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where the linear and non-linear strains are seperately de-
noted as €;; and &;;. The variations follow
é:’:}fgf = &gy + é&ﬁw {8:‘
where
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Similerly decompose the stress
{ige 8, 9and 10in 4 to obtain
; "f.ﬁﬁ“w E‘EACQ‘? v + /ﬁgg{f} 5A:Zj d¥ +
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4
'The integration, as before, is over the original volume,
This expression is exact for large deformations, large
strains, and malerial non-linearities. For Hnear slastic

materiale, the incremental stress is related to the ncre-
mental Brear strain by a constitutive relation of the form

4}*57?155' == Dijmniﬁfﬁm

D35y has the general form L T Y L owith [V containing
the material constitution and L the composite ply an gip
transformation. The first term o 11 then becomes the
standard linear fnite element termn. The second term s
an incremental term nvolving the existing state of stress
and Hunear strains. The third term, underlined, is the
kev term for rotorcraft, It is an incremmental term involv-
tng the existing state of siress and the non-linear strains.
This term produces the structural couplings between an
izl and transverse deformations (torsion is not a separaie
gtate of motion in 3-I) but a function of transverse defor-
mations) in response to inertial effects. It carries within
it the classical extension-bending and Aap-lag structural
couplings. The fourth term I8 dropped as part of lin-
earizs itmn, with the assumption Dimn@madeg = 0. The
final expression then becomes

5U = [ Digmn Smn §47,; dV -+
J

v 12y
jcrwc} §dgy; dV -?"]7 (Ey B, dV
& ¥

Iterations are required, of course, primarily for oy {5 but
also for the linearization, The latter ie usually insignif
icant. For example, for & static solution, given a pre-
seribed, deformation-independant, non-inertial external
forcing, the equation of motion takes the form

&7 =Wy

where 4Wg is the external virtual work., The ierative

procedure is then

/ Dijmn Ao 3064 dV + / st} 6my; AV
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readily recognized as & Newton-Raphson iteration. If
gty = updsted only on the right hand side, the pro-
cedure is & modified Newton iteration. For s rotor, #
must be updated on both sides initially fo obtain the
correct non-linear stiffness. Thereafter, modified New-
ton Is encugh for the purposes of alrload non-linearitiss.

Kinetic energy
The variation i kinetle energy or the virtual work

by inertial forees is glven by

&1 = —&dW; = /ﬁ?’- A7 dV
&
where 7 and 87 are the scceleration and virtusl displace-
ment of a material poind P on the blade relative fo an



inertial frame 7. Let P lie in a non-lpertial frame B
The frames [ and B are associated with corresponding
conrdinate axes or basis. Al any instent, frame H has 5
displacement 97 relative to the frame T and an orienta-
tion defined by & rotabion matriz C78. O7F defines the
orientation of f relative to B, Le. it rotates the axis from
Bio I I the commonents of 277 (*xpres:sed in Boand f
basts are denoted by 2277 and 2577 then

$BIH _ IB BB
Recall, that the time derivative of the rotation matrix is
related to the skew symmetric angular velocities by

(}2’5@ — {;EH&EL’B — ;!E%;fﬁ'{:fig

e

~EBi B
W

where iz the anglar wiem?}; of B relative to [
and measured i B, and &P is the sngular velocity
of I relative to B and messured in 7. The components
of the motlon of the point F relative to T and H and
expressed in [ and 5 frames satisfy

PP e
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where the frame motions have been expressed in body-

i 5 1 377
fitted coordinates as #8177 = oBI o (HBLBIE 4ha
PRI o QT BaBIB 5 (HBAIBIBLBIIE The somponents

of virtual d}ap}&ﬂoz nent are
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278 and o ¢ are the

rigid body translational and
rotational states of frame B, The virtual displacement
ErP BB i B frame is written in terms of its finite element
degrees of freedom 6rf PP = 1'!?,35%. The kinetle energy
i then

in general, frame H mav comtain g genersl fexible com-
ponent. Consider a simple case for ustration. Let 7 be
the undeformed blade rotating frame, comaining the en-
tire blade, with origin at the rotor hub, It dndergoss con-
trof angle motions 0,4, 8 with respect 1o another rotating
frame, H, with origin at the bab, This frame undergoes

QE?EEB?}‘.&;H)

rotational motions £2, 0, with respect to a nov-rotating
inertial frame I at the hub. H has no righd body states
with respect to 1. Thus §257% = 0, 50P1/E = 6, and

SEEE L GBIE g
{ Cp  —Bple  Sude
TE -
("‘_,Lf — ' S Cyle By iii}
I o &g cg |}
= ¥ s the blade azimuth angle, £ is the control angle,
and ¢ =cosd. .. ete.
g3 6 /6
PE ol o 1P+ 0 el =1 e 167 (18
thy Ty Qes

2 H ¥ . . . -
e® and el are ihe basis vectors in the B and J frame

. [ O . -
repectively. The non-zero components of #7777 in the
kinetic energy expression 16 become
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The virtual displacerment is simply the varistion of
the incremental displacements

- T ¥ s
5}’.”} BiE — {r;ﬁ{}ﬁ i*“)}

Thus, the kinetic energy 16 takes the following form

81 = j dul p (Tt +70d+Te w4+ Ty )V {243
v

For example, with the shriplest assumption of only a col-
lective, 8 = 0, and steady rotation, 1 = 0, we have from
18- 22 the following muss, damping, stiffvess, and foree




eomtributions from inertis.
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Virtual work by external forces

A surface Hes, always, on one or more of the element
faces, defined by e natural coordinates £ £ 4, w2 1, or
{ £ 1 isee following section). A differential change df
in the natural coordinates {£,%,{} creatss the following
changes in the geometric coordinates (m;, xs, 14}

i

dri = iede = 3 Hy ol

k=1

i=1,2.3 {26

Similarly, differential changes dn and d0 create the vec-
tors xdn and & ¢ in the geometric coordinates. The
aren dfdn, for example, then corresponds to the area of
a parallelogram betwesn the two vectors o ¢df and z c45
in the geometric domain, defined by their cross product
or cross product matrices: T X Ty —F P, = 28,

o e 4
ETg b1
— Binlag

{ 3“2;5?373‘?} -
Tg R Ty = | Faglig —
| TreTay -

For exaraple, i normal pressure p on an elemental face
defined by { =constant, produces a virtual work dA. 6%,
the components of dA are simply T o, d drp. The cone
ponents of &% are the increments] virtual deformations
Slug ugusl? = d¢"HT, where H are structural shape
fanctions (see next section}. The virtual work expres
sion is then

{27)

dg’ /pﬁ}’ w e, didy=dg" @
A

A general surface stress distribution oy is incorporated

in exactly the same manner using {og - dA) - 61l

W = ’EQ’T_/!{[T o5 Ty dEdn =800 Q

Because Buid stress are deformation dependant, the ares
must be evaluated st the deformed configuration. The
deformed configuration s not known a priorl, therefore,
.%emtmm are required. This is discussed further in the
wady Hover Prototype’ under '3-1 FEM

Hotor .

Brick Finite Elements

The analysis of bending doninated problems involv-
ing thin structures using 3-10 elements suffer from severe

stiffening known as element locking a8 the element thick-
ness tends to zero, A simple but effective way to prevent
iocking is to use higher-order elements ~ as in this study
containing sufficient number of ternal nodes. Devising
efficient lower order locking-fres brick elements, based on
reduced-integration or enhanced assumed straln methe
ods, are bevond the scope of this iniial development.
The primary focus ab present I8 Of BCCUTacy.

Figure 1: 27-node isoparametric brick element in
cupvilinear natural coordinates; 64 gauss integra-
tion points.

Figure | shows a quadratic, Lagrangian, iso-
parametric brick element developed in this study. Tt con-
sigis of 8 verfex nodes and 19 internal nodes —~ 12 adge
nodes, 6 face nodes, and | volume node. Within lsopara-
metric elements, geometry and displacement solution are
hoth interpolated using the same shape functions, Thus

and therefore
B

N
== Z F a Fia g == E}{a u?

@wn a=1

(30)

where r is the elemental node point index. N == 27 here.
The shape functions are expressed in element natural co-
ordinates £, 7, and (. We consider Lagrange nolynomisls
in each direction.

Hy = Hy{E, () = LR L5y () (30)
Fo the present formuplstlon n = m=p=2;and [, J K =
1,2,3. The second order Lagrange polynomials in, say
z, are o{z — 13/2, 1 — 2%, and oz + 13/2. For example,
based on the local node ordering shown in the figure, we
have the shape function corresponding to node 11 s

| e

Hiy = LAE Li(m) L) = - nd(1 - £ (n+ DK - 1)
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The strains require the derivatives of the shape funciions
with respect to geometric coordinates
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These are caleulated from the derivatives with respect to
natural coordinates as follows
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The svaluation of the Jacobian, J, is siraight forward
using the dertvatives of the shape functions with respect
to element natural coordinate axes and the location of
the rodal polnts (Le. the grid points).
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The required derivatives are then
%y A
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Henceforth  the above derivatives sre denoted as
Hoo Hen Hon and Hy e Hyy Ao In addition, the
first quantity in 32 is denoted by [y, le

Ly = > Haj uis

[FEF
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From the bnear strain Az as defined in 7, the strain-
displacement relation now takes the following form

A

Loy,

={Bps + B g {gf}j

where

5—\3{?! = i‘uu fipy B Wiz Moz dar ... Uan How ?1'3;\5]
(37)

and the expressions for Bro and By, are given sbove.
The first term in the strain energy 12 now becomes

iogT f (Bro+ B0 D (B + B dV | Ag
v ;
(383

The second term i trended i the same manner to obtain

sagT ]f_f&w + Bt a0 dV ) Ag
LV
PP . s - .

where &1} = loy o2 oax o1 oo o13]° . Now consider
the non-linear incremental strain Asg; as defined in 7.
Clearly, the strain s non-linear and a strain-displacement
relationship cannot be found. However it has a quadratic
farm, and hence can be re-arranged as

SagT f BL, 3,00 Bap dV
v

with the matrices having special forms

{;{i} i




A cantilevered
plate using {4,4,4} brick el
ement grid

Figure 2:

Figure §:
quencies of a {4,4,4} solid block approaching Kirchoff
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Verification of brick elements; Natural fre-

plate frequencies {symbols} with reduced thickness
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The volume integrations are performed using 4 gauss
points slong each natural coordinate axes, a total of 64
integration points. Note that

AV == det{J} d€ dn d¢

Made 4% 4wd | ¥x8xd | Kirchhoff
number Hricks Bricks Plate
1 3.55 3.50 347
4 .68 8.5% 251
3 22.03 21.58 21,29
4 23,16 2729 2714
5 3284 31.19 30.96
& 58,78 54.31 54.13
7 71.19 £3.09 61.29
8 74.75 6496 64.16
i} 83.68 7250 7088

Table 11 Plate frequencies using 3D FEM: nondi-
mensionalized woat,  /D/ple®, & plate dimen-
sion, {1 thickness, pr density, 1 = E%/12(1 — 7},
E: Young’s Modulus and ¢ Polsson’s ratio

VERIFICATION of 3-1) FEM

A preliminary verification of the 3D FEM model is
carried out by reproducing non-rotating thin plate fre-
guencies, amnd rotating slender beam frequencies. The
former verifies the locking-free behavior. The later veri-
fieg the non-linear implementation,

[

| section grid | Torsion 1 | Torsion 2 |
ix1 1.710 5.132
22 1,586 4.758
I3 1.577 4.733
44 1.576 4.728
5%5 1.575 4.726

Table 2: Beam torsion frequencies vs. cross-
section grid reflnement; 8 spanwise clements;
nondimensionalized woat.  JGJ//LY EB wvale
ves are 1L.OT1 and 4.712; Besm dimensions are
Lxexe L= 108

Thickness 8 16 20
Ix3183x3 3x3
C 4733 1 4.726 . 4.725
o/ 4787 | 4.746 | 4.742
o/4 4824 1 4704 | 4.7%
/8 4886 | 4839 | 4824

Table 3: Second torsion freguency vs. spanwise
grid refinement; 3 x 3 cross-section: nondimen-
sionalized w.r.t. /GJ/70%; EB values are 1.571
and 4.712

Thin Plate Frequencies

The locking-free behavior of the brick elements, in
shear, iz verified by re-producing Kirchhoff plate frequen-
cies for a thin plate, using a {4, 4,4) brick mesh Fig. 3.
The plate frequencies are oblained from converged 2D
rectangular plate fnite elements (20,20 and sre vali-
dated essily with documented classical solutione. The
diserepancy at the higher modes are resolved using a finer
mesh converged solution, see Table 1. The regidust dif
ferences are due to shear, not present in the Kirchhoff
solution, but present in the brick solution.
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Rotating frequencies and mode shapes of an uniform hingeless blade of aspect ratio 15,

thickness 25% chord, and rectangular cross-section: 3-D bricks vs 1-D beam; 16 < 3 x 3 grid

Agpect | Torsion 1| Torsion 2
Ratio

10 1.588 4.794
44 1.5849 4.798
20 1.603 4.813
15 1.606 4.826
it 1.615 4.860
R 1.622 1.800
8 1.835 4819

5 1.645 4.4

4 1.662 5064

3 1.754 5.478

Table 4: Torsion frequencies vs. aspect ratio; 16 »
3 % 3 grid; pondimensionalized w.or.t. JGJ/TL3
ER values remain 1571 and 4.712 for all aspect ratios.

Siender Beam Frequencies

Next, the 3D element is verified using a slender of
uniform geometry that behaves as & beamn over a reason-
ably large veriation in thickness and aspect ratio. The
bending frequencies are essy to re-produce, torsion in
general requires greater resolution. An uniform slender
beamn of aspect ratio 100 and square cross-section, Le.,
the dimensions are 100¢, ¢, and ¢, in length, width, and
thickness, is considered. The torsion frequencies converge
towsards Buler-Bernoulll numbers with two to three cross-
section elements 2. The remalning difference stems from
spamwize resclution.

The effect of spanwize resolution is shown n the first
row of Table &, sfarting from 8 x 3 x 3 grid as the base-
fine. Spanwise resolution becomes more important ag

Mode | Heam fregs. 3:;6”{1'8{;& Maode
no. {/rev} {/rev} type

1 6,826 0.824 Lag 1

3 1,050 1058 Flap 1

; 2.7BR 2780 Flap 2

4 5.058 5006 Liag 2

5 5211 5.223 Flap 3

R .43 6.625 | Torsion 1
7 8.542 &.5497 Flap 4

Table 5 Rotating frequencies for a soft-inplane
hingeless rotor; 16 % 3 x 3 grid in 3-D; L: Lag, F:
Flap, T: Torsion

the beam thickness s reduced. This is shown in the sub-
soquent rows and columng of Table 3. The rows show
the variation of torsion frequency with o progressively
thinner beam. The columuns show the effect of spanwise
refinernent for each thickness There is increased devia-
tion from Buler-Bernoulll values a5 the thickness reduces.
With the thickness fixed at ¢/4 and the grid at 16 3% 3,
the aspect ratio of the beam Ix now progressively reduced.
Table 4 shows that from 100 to 20 the frequencies remaln
relatively constant. At aspect ratio 5 there is still only
an ervor of 5~ 6%, This deveation is expected from the
physics of the problem and 8 not an arror in the FEM
Formulation.

Clonsider the configuration with length 20, width
¢, and thickness /4. The rotating modes of this slmple
besm structure are shown in Fig 4. The frequency plot,
Fig. 4{e}, shows the the beam frequencies are almost ex-
actly reproduced by 31 FEM - and the small grid size
of 16 = 3 » 3 Iz adequate for this simple problem. Note




ihat this serves as a verification of the nov-linear for
melation. The torsion frequency shows an error of 5%
consistent with the deviation from Eunler-Bernoulli fre-
guencies in the non-rotating case for this level of grid
refinement. For this structure, the torsion frequency s
relatively high, and occurs ouly as the sixth mode. The
rotating frequencies at £ = 27 rad /s ave given in Table 5,
both for & beam and the 3-D analysis,

ITERATIVE SUBSTRUCTURING USING
PARALLEL KRYLOV SOLVER

A parallel Newton-Krylov solver is developed to pro-
vide an efficient and scalable 3.1 FEM solution,

Large-scale structural dynamics problems are solved
most efficiently using the method of substructures. Sub-
stracturing involves partitioning a structure into nop-
averlapping subdomains, 1% 15 the most accurate method,
because each subdomain can have s own internal solver
depending on g local condition number. Almost always,
a direct factorization is preferred. A real structure con-
tains significant heterogeneivies — thin and slender geome.
tries, plate and shells by biharmonic PDEs, 3-I bricks
with high bandwidths (> 1600}, non-Hnear materials,
and constraint forces — factors that routinely give rise
to condition mumbers of 105107,

Modern methods of iterative subsiructuring pro-
vides a domain-decomposition based preconditioned it-
erative solver for the interface problem. The interface
problem need not be of primal type, but can also be of
dual type. A primal problem consists of variables that
are & subset of the original unknowns, e.z. the displace-
ments ab the nmterface. A dual problem consists of vark-
ables that are not a subset of the original unknowns but
whose equality must still be gauranteed, e.g. the reaction
farees at the interface. Depending on the problem dual
varialdes differ - bending problems will involve {ransverse
shears and moments, whereas a plane sbress or strain
problem will onvolve only n-plane stresses. Regardless
of type, whether primal or dual, all finite element inter-
face descriptions are precisely the dizcrete equivalents of
the Poincars-Steklov operator.

The interface has attractive spectral properties as a
result of which it is more amenable to iterative solve. In
particular, unlike the substructures themselves, the con-
dition number of the interface problem grows at a rate
that is an order slower compared to the original prob-
ler, ez, by G(h™) for second order and by 0{h™%) for
fourth order PDEs. However, it also grows, necessarily,
at O{H %} where H is the suhdomain size. For a second-
order. elliptic, positive definite, and coercive operators,
the precise number for uniform finite element meshing
piven by (25!

o
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where H s the maximum and F, I8 the mindimum sub-
domain diameter. The main objective of iterative sub-
structuring 18 to provide precomditioners such that the

10

preconditioned interface problem has a condition nume-
ber independant of both b and H. Such a preconditioner
is an opbimal preconditioner. At the ssrme time, It must
be eonstructed in paraliel, subdomaln by subdomain, re-
quiring only communication between subdomalng but
other serial operation ~ otherwise the primary purpose
of iterative substructuring is defeated,

The dependance on O{H;%) cannot be prevented
without & coarse grid solver — communication only be-
tween neighboring subdomains will always show this de-
pendanca. Thus, a coarse problem be. & general mecha-
nisms to propagate local information gleobally, is 2 cendral
requirement of any sealable sobver.

The general bullding blocks of a preconditioned
Krylov solver { for solving M4z = M % arer (I}
residual caloulation r b — Ax, {2} preconditioning
M7 r and, (3) a matrix-veetor multiplication Az, An
iterative substructuring algorithm provides these build-
ing blocks in a subdomain independant, paralle! manner.
Onee the building blocks are provided, constructing &
Krylov solver is trivial, Unlike the CG update, the GM-
RES update, however, poses Hs own paralelization iszues
due to the Arnoldi procedure,

131
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The FETI-DP Algorithm

In iterative substructhuring, the subdomain interface
nodes are first separated into vertex, edge and face nodes.
The vertex nodes and a subset of edge vodes are then
designated as corner nodes. In FETLDP, the degrees
of freedom {DOFs) associated with the corner nodes are
formulated as a primal interface. The DOFs associated
with the rest are formulated as a dual interface. The
carner nodes form a coarse problem that propagates lo
eal subdomain information globally, Because the munber
of DOFs assaciated with a corner depernd on the order of
the problem, e, 3 DOFs for 2nd order brick FEM or 6
DOFs for 4th order plate or shell slements, it automati-
cally renders the coarse mesh appropriately denser with
increase in order. The FETLDF method and its imple-
mentation in this study is entively based on the work of
Refs. {15, 16]. A detailed exposition of our implementa-
tion is not provided here, A brief deseription is provided
below summarizing its key aspects.

For a given subdomain, if its nodes are re-ordered
with internal nodes 77 frst, followed by interface nodes
£%. and then comer nodes I'L {for a selection of corner
nodes in 3-13, see next section}, then asubdomain matrix,
say the stiffness matrix, takes the lollowing form

OE o g
ir Hig Ki Koo ga ]
K& 5 K& ) — fca 4 FAZI
B 1 EE BY s s |
Koy Kip Koy | L KVr Ko
413

where the internal and edge nodes are denoted topether
ag R® nodes, The subdomsin foreing, f%, and unknowns,
¥, are correspondingly

P T Y ]
5 % FAcEy
f“g = ‘\ }}3 ) ’5,1‘@ e ( é‘f" \1 ;32,’
v oy
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Two Boolean restrictions are defined for each subdomaln.
The first Boolean restriction, B, restricis uj, Lo u}, and
assigng a +1or —1 sign such that equalily of the interlace
degrees of freedom are gauranteed upon convergente

Y Biuh =0

The summation sign denotes assembly over subdomains.
The secord Bocolean restriction, BY, restricts the globsl
corner nodes to subdomain corners. Note that, for a re-
ordered subdomain, the first restriction, 8% has the form
and size

PRI £ I”:% iy
, 0 ] (443
By = By e ‘
i i1

[ %%
where 31 iz a diagonal matrix with entries +1 or —1.
E
The dual-primal procedure computes a set of dual vari-
ables (auxiliiary variables that are not part of the original
problem} which on convergerce allows the recovery of the
subdomain internal and edge nodes as

Ky = i~ BRI X (45)
and the global corner nodes as
Koy ul = Fipd+ 3 {46

The corner probiers, which propagates ervor globelly, is
a coarse grid problem that is also constructed subdomain
by subdomain. Formally,

Ky fo»‘, Koy = Kin " Kpp™ Kine| BY

FL A= ZB l“" o Khn f?“";,xs (4n

,W.Zf@ K

The solve, however, is carried out in vy subdomain.
Thus, before the interface Herastions begin, the subdo.
main contributions to the left hand side of the corner
problem are constructed and factorized in every subde-
main, and globally communicated. Thereafter, during
the interface Krylov iterations, the coarse problem solve
iz only a repsated right hand side solve.

The bullding blocks of the Krylov eration: residual
ealculation, preconditioning, and matrix-vector multipli-
cation procedure are briefly staled below.

Tie —1lps  ra
Eiyv' Khg ifq—’f{”}

eve

Hesidue calculation

The first part of the residual ry is obviously

=y Bhug
&

= 3 BLKRy
&

Zﬁq et

The second part of the residual m is obisined alter the
coarse solve

= — Fy ?iy == ‘:W Bk Hi{uzf{if%"ﬁg’ﬁi’

ES

{443

The restdual is then » = v, + 5. Note that the reside
ual caloulation s based on suhdomaln Newmann solves.
Therefore, the subdomaln partitioning, and corner node
selection must ensure rull kernsls.

Preconditioner

The residuals are used to congtruct subdomain fluves

£
{

w = K + Ky Bery {30
with w® obtained using subdomain Dirichlel solves
K0t = K§, " Kip Borg {513
from which the preconditioned residusl follows
M7 = ST BLy (52}
P :
8
Expanding the above expressions, we have, formally
: a 0 7 v
-1 4 £ FEEY
M =3B [ o g | Bk (53
B RET

where 5%, are the subdomain Schur complement matr-
ces. A more efficient preconditioner {but not optimal) is
chtained by skipping the Dirichlet solve above and cal
culating the Huxes directly as

s = K pp Birs

This leads formally to

M Z B, {

The subdemain Sebur complement mabrices have been
spproximated here by thelr leading terms. The two pre-
conditioners above are termed the Dirichlet and Lumped
preconditioners. All resulls shown later in this paper uge
the Dirichlet preconditioner, even though for 3D brick
problems the Lumped preconditioners are known to be
faster.

i

(5
0 K%, {54}

—i B2l
i Bs7

Matrix-vector multiplication

’?‘h%@ is identical to the residue caimiaa'{;m except
- By T3 i now re placed with B} 3{ . Here »* is the
anhdt}m&m restriction of the vector to Lfﬁa mulitintied,

Numerical scalability

For a svmmmetric and coercive elliptic operator the
condition number of the preconditioned FETLDP ter-
face problem can be shown to grow as

= ¥

ﬁm()&}w{)gﬁg)

where m < 3
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Figure 51 A 4 x 4 plate partitioning; 1% el
ements in each partition. Interface, cor-
ner, and boundary nodes shown in red,
bine, and green respectively.

Figure 6 A 16 x 16 plate partitiouning; 16
elements in each partition.

That iz, if the subdomains have size H, and the Buite
element mesh has size kb, then the condition number of
the interface grows only az H/h. The condition num-
ber determines the Heration count required for conver-
gence. For optimal scalability algorithim, the iseration
conunt does not grow with the number of subdomains ag
fong as the mesh within each subdomaln s refined fo
keep H /R constant. Thus, a bigeer problem with addi-
tional subdomaing require the same iteration count as a
smaller problem as long as both contain the same mesh
resalution.

The optimality of the algorithm s verified on 2 plate
berding problem.  Plate bending, ke beam bending,
iz governed by 4-th order partlal differential equations
and is considered 2 challenge for terative solvers because
thetr condition numbers grow at s rate 8{A™), Tables 6
and 7 show the change In iteration count with decreas-
ing values of & and H respectively. The iteralion count
increases with increase in H/h and decreases with de-
crsage in H/h. However, if H/h i held Bxed, Table 8
shows, as desired, the Heration count remains relatively

constant. Thus, the two plate problems shown in Figs, &
and 6 converge al the sare rate — even though the latter
is four fimes as big as the formor.

F ot iy FETLDP FETLDP

CG GMRES
7871 EE B 3]
i/12 16 468 23 7%
/16 16 816 26 31
120 16 1260 29 36
1/24 16 1800 32 39
1/32 16 3168 37 46

Table & Number of substructures fixed n,=18 {{x
4 mesh partition}. Iteration count vs. increase in
problem size.

H e flgey FETI-DPF PETLDP
CG GMRES
1738 16 31 16
/4 16 1260 3z 41
/6 36 1260 25 33
1/8 84 1260 25 24
1712 144 1280 21 23
Table 7! Problem size fixed DOFa=1260 {(h=1/24
mesh). Iteration count vs. incrase in number of
substructures. '
A Ne gey FEUEDP FETEDP
G GMRES
/128 468 23 24
1/16 16 &1 26 31
/200 25 1280 28 32
1724 38 (800 2% 35
Lj28 46 2436 30 34
1/32 84 3168 30 34
Table 8 Problem size per substructure fixed

H/h==4 (16 elements per substructure). lteration
count vs. increase in problem size.

Parallel Implementation of CG

A standard Conjugate Gradient (PCG) update is as
shown below. The main bullding blocks that are con-
structed using the parallel FETT.DP procedure are high-
ghted i hold.

do=0 ro=d-Fig
for k== 1,9, ...
Sy o= M irey

£ = (W{ iy &_A;; (2f ,ren) with £ =0
Di == Zgp ¥ kﬂ'i—? with g = 2
= (2l _yree )/ E?J- F?k)

A = Apy b e

Fp = Tgy1 — "‘f[gg}’pg



end

In addition {o the communicstion requirements for
the FETI-DP, the CG update reguires processor syuchro-
nization points of its own. These are points beyond which
calculations cannot proceed unless all processors reach
that point. All vector inner products are synchroniza-
tion points. The two synchronization points are under-
lined above. An additional synchronization polnt i re-
guired to caleulate the norm of the predonditioned resid-
ual {zp-1lle, to determine the stopping criteria. In the
case of UG, the tolal nutmber of polnts can be reduced to
one, using advanced norm estimation techniques 126, 271
This refinement has not been included at present, but it
ie degired when thousands of distributed memory nodes
are eventually used.

Parallel Implementation of GMRES

A GMRES apdate require an Arnoldi procedure and
a sohstion of a least-square problem. A Reorthogonal-
ized Classical Gram-Schimdt Arnoldi procedure is fmple-
mented in this study, based on the seminal work of Daniel
ot al. 128]. On the one hand, this algorithm produces high
levels of crthogonalization {down to machine precision)
and Is superior o Modifled Gram-Schmidt [29). On the
other hand, it remedies the unaceeptable communication
costs of the latter {explained below). Note that, a Clas
sical Gram-Schimdt {ie., without Heorthogonalization)
is numerically unstable and is not used in practice.

Recall, given an initial estimate zg and residual
ry = & — Azg, every m-th GMRES Herate for the so-
tution of Az = b is given by 2., = 7 + K where K lies
in the Krylov subspace of dimension m asscciated with
A and rg, KA ro) = spanlra, Ao, .., A7 g}, and
srinimizes the norm |Ib — Axils.

The Arnoldi procedure in dimension m constructs
an orthonormal basis Vi, = [15, 13, ..., vy of the Kryiov
suhspace ., (A, 7). The procedure also generates a ma-
srix H,, of size {m+ 1) % m the top m xm block of which
tx =n upper Hessenberg matrix H,,. The m-th iterate is
computed as x., = To + Vinle where 1y I8 calculated
such ., minimizes |5 — Az, This smounts to cal
culating & p,, which minimizes [[fe; — Ho |1z where
4 = ||rally and e, is the first canonical vector of R
A R factorization — emploving Givens rotations — is
used here to solve this least squares probleny,

The classieal GMBES method expands the Krylov
subspace dimension, iteration after Heration, to n and
terminates in ab most 1 Herations, Hach iteration re-
quires every previous basis vector. A restarted version
of GMEES, ua the other hand, restricts the expansion
teo, say, m ditnengions and restarts the Arnoldi proce-
dure using T, as it new initial guess, These restarts are
called the ouler ierations. Given below is the restarted
GMRES(m) algorithm.

.

.‘;E(g = {}; ¥y —= d - E}Lg

13

FATE .-As'f“""?‘s}

P

3= Hzllz

for k= 1,2,. .. till convergence
vy = 21/

Arnoldi precedure

Least-square solve of order mi
Calculate ¥, to minimive
min yewn ||Fer ~ Heylle.
Use QIR actorization of H,,.

e = Aao Vit
Fy = d— F}*k

Fye w0 h—i_irk

G = lzztis

end

The Armoldi procedure s the heart of the algorithm.
It requiires three steps. Tor a given A and an initial vector
w7y, the 1 bhasls vectors are constructed as:

for j=1,%2,....m

{1} Basis expansion: wjy; = Ay

{2} Ovthoponalization: orthogonalize w,y
with respect to all previous Arnoldi
vectors (vy, v, ..., 1)
Normalization: by = {jug]
and Vil = w:f:_—,j_fféj;ri!jj.

@)

Orthogonalization is the main step, Traditionally a
Modified Gram-Schmidt algorithm is always preferred at
thie step (over Classical Gram-Schmidt} becanse of iis
ramerical stability. It is ax follows, The synchronization
points are underlined.

for j=1....,m

w = Py

i M w

fori=1,....j
hig = 1;;}}
t=1-— f}/{‘a‘ﬁg

erd

hitrg = [tz

ity = f;hjw i

end

The first set of points, ie  the ’f)?i caleulations,
presents & high communieation requirerment.  Within
each step 7. the vecior 4, once generated, i imusedistely
prajected to, and subtracted from, each and every one of
the previous Arnoldi vectors v, Fach projection, a vec-
tor inner product, requires a global synchronization. In
a Classical Gram-Schimdt, the projection and the sub-
straction steps could be carried nut separately, with a sin-
gle synchronization step in-between. However, because
Classical Gram-Schimdt & unstable {though mathemat-
ically equivalent to Modified Gram-Schimdt), a second
orthogonalization step is needed. Thus, the final Re.
orthogonalized Classical Gram-Schmidt algorithm i as
{ollows,



for i=1,...
w = Fv;
t=M"tw

L

f?,,gaj =R
end
Global synchronization 1
fori=1 ]

end

for i =
B
end
Global synchronization 2
fori=1,...,]
f=1— h;jtg

end
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Figure v Planform of prototype rotor blade;
¢ = (.53 my two different spanwise grid resclu-
tions used in this study are shown,

3-D FEM ROTOR ANALYSIS COMPONENTS

In this section, the main components of the 317 ro-
tor FEM analysis are described. They are the geometry
and grids, partition and corper selection, steady hover
prototype, and the transient forward fight prototype.

These are mere prototypes because we do not use
real alrloads, do not have s trits mechanism, and do not
have st present a true representation of a blade structure.

Figure 8 Cross-section of prototype rotor
blade; 5% t/¢, exaggerated scale; 4 » 4 bricks
with internal nodes,

In addition, for research purposes, we will consider only
small size problems, with which 2 large number of cases
could be constructed using the 48 processors that were
at our disposal.

On the other hand every fundamental aspect of the
physics of the structural dynamics of an Bolated rotor
blade s incorporated. Aund, the parallel solution proce-
dure is generic, Le. i is independant of the type of air-
loads, control angle varkation, grid, and material consti-

ution. The objective is to study the numerical scalabiliby
of the Newton-Kryviov solver and the practical scalability
of s present implemention.

Geometry and Grid

We consider a hingeless rotor blade, diseretized as
shown in Figs, 7 and & The simple grid generator for
this study requires that the cross-sectional discretization
remalng the same along span and that all sectlons be
solid, With these assumptions. it I8 straight forward to
sccomodate an arbitrary variation of airfoil shape, twist,
planform, and advanced tips. A key limitation at present
is that only one contipuous structure can be gridded.
Grid generation, however, is not the focus of this work.
It is assumed at the suitable grid will be available to the
solver from other sources,

The surface geometry, required for external forcing,
is defired by the sectional airfoll coordinates, We use a
generic, symmetric alrfoll with 3% thickness (Fig. 8).

We consider a set of four fnite element discretiza-
tions. ny X 1y X 1y refersz 1o numbers of elements along
apan, chord, and thickness. Note that each element con-
tains 81 degrees of freedom and 64 Integration points,

D Grid | g @ong xomy | Total DOFs |
1 AR x4 x 2 12,9680
2 R4 x4 25,070
3 GE w4 w2 25,920
1| Gxird 16,656

Table & 3D FEM Rotor Grids

Each fintte element, naturally, can accomodate s
own constitutive material model and ply direction — we



use simple isotropic properties: E = 73 GPa; p = 0.4
and p = 2700 kg/m” (corresponding to Aluminum}

Along with the dimension ¢ = (.53m, these geper-
ate similar order of magnitude non-dimensional values
of stiffuess and inertia as soft inplene hingeless rotors.
Mo attempt s made to place the sectional offseis with
respect to quarter-chord. Thus, the biade may not be
dynamically stable. However, the values will generate
typical deflections with typical airloads. The airloads are
an uniform 4000 N/m? baseline (around 375 Ib/f slong
span} baseline, and two and four times that amount, to
generate large deformation cases. The alrloads imposed
on the blade arve preseribed - they act only on the top sur-
face and they are normal pressture airloads, Thus, they
have the non-linear characteristics of a follower force -
ie. they act normal to the deformed surface which is
not know a priori. The rotational speed 18 ¢ = 27 rad/s
fateady ).

Grid Partitioning and Corner Selection

The partitioning requirernents are unique — not just
any partitioner will do. The generation of subdomain
grids from a global grid via a re-calculation of the finite
alement connectivities ks straight-forward. Partitioners
are widely available in public domain, that carry out
this task intelligently ensuring an optimal balancing of
processor lnads. However, for structures, this is not the
most Dmportant requirement. The most important re-
guirement 18 that the the coarse problem be picked 1o
enzure & null kernel in every substrocture.

Boundary nodes 5

ireriace nodes
{faces)

Figure i{x Substructure node designation for
one-way partition.

The partitioner we develop as part of this research
is simple — in that it handles only the brick elements we
developed, and i makes the same assumptions on the
grid type as our simple grid generator. Namely, that the
cross-sectional grids must remaln same throughout the
span, regardless of variations In geometry.

Figure 9{a) shows a type of generic 2-13 partition
that is used n the present study., The blade can be di-
vided into any number of substructures in the spanwise

Boundary nodes

\.

irterface nodes
{faces}

{vertices and
aciges)

Figure 11: Substructure node designation for
two-way partition. Corper podes are edge
nodes connecting more than two substrue-
tures and those ccouring at the boundaries.

Boundiary notes

interface nodes
faces and vdges}

Figure 12: Optimal substracture node designa-
tion for two-way partition. Corner nodes are
vertex nodes including those ceccuring at the
boundaries.

andd chordwise divections. Figure 8{c) shows an alter-
native 1-1 partition. It will be shown that the labter,
though naturally losd balanced lor & blade structure, i
s poor partition and should not be used.

The partitioner performs the following tasks:

1. Designates the corner nodes.
2, Heorders the subdomain nodes info interior, face,

edge, vertex, and boundary nodes. Recaloulates the
subdomain finite elemment connectivities,

3. Sets up domain connectivity maps for substructure
to substructure cornmunication.

The first and second are the key tasks. The third is
merely a matier of book-keeping.



{(a) 2-I3 parsitioned blade grid P s
Y P cE {b} Corner and interface nodes

{¢} 1-ID partitioned blade grid fdy Corner and merface nodes

Figure 9: Partitioning of blade grid into substructures or subdomains. The corner nodes must ensure
a null kernel for each substructure. Each substructure will be solved in a separate processor.
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Corner Selection

For a generic 310 substructure, each interfaze node
can be a face, edge, or vertex node. Of these, the edge
and vertex nodes, that are common to more than two
substructures are designated as corper nodes. Now con-
sider the 2-way partition of Fig. 9(a). The nodes on the
subdomain edges are bumediately designated as corner
nodes. It is clear, however, that this definitlon meakes
the two substructures at the tip end {or extremeties of
the tip end in case of more than two chordwise strips) in-
definite, Fach substructure then carries a rotational rigid
body mode. Thus, the definition of corner nodes most
include i addition, those edge nodes, that are common
to only two subdomains, but which occur at the bound-
aries of the structure. With this definition, the corner
nodes are now as shown in Fig.o 9(h). This definition
also enables the selection of corner nodes for the 1-D
partition in Fig. 9{c}, otherwise, there would be no cor-
ner nodes. For a very large-scale 3D problem, a large
number of corner nodes is generated by this procedure,
leading to a moderately large coarse problem. A superior
choice of corner nodes for a 3-D problem s simply the
subdomain verticss, and like before, additionally those
that oceur at the boundaries. There is then always a
maximum of only 8 corner nodes per subdomain -~ re-
gardless of the grid. In this paper, this selection is not
implemented. We use the previcus selection as shown in
Fig. G{h). Note, the corner nodes define super elements
that constituie the coarse problem, and, for a 2.1 par-
titiom the optimal selection can leave the super elements
without internal nodes. The concern for element locking
under these clroumstances require a closer exsmination
that hae not been earried out vet.

Node Reorder

The reordering brings the inferior nodes firsg, fol
lowed by interface nodes, then corner nodes, and lastly
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Figure 14: Blade steady deflection in
hover using prescribed pressure alrloads
{only grid outlines are shown)

the boundary nodes, The procedurs depends on the grid,
partition (1-D or 210, and the selection of corner nodes.
The N elemental nodes in sach brick is associated with
& notural within each substructure. The natural order s
then associated with a reordered order, and its reverse,
with an assochstion back to natural. In addition. The
natural erder is agsociated with the global order as the
geometry and material constitution is defined in the lat-
ter.

Domain Connectivity

Domain Connectivity s merely a matter of book-
keeping. For a Lagrangian problem, the connectivity re-
mains static, and needs to be caleulated only onee for
a grid. Becsusze of the non-floating, nonoverlapping,
and conforming nature of the partitions and elements,
there are no search, interpolation, or projection reguire.
ments. Uonsequently, there are no errors introduced dur-
ing substructure fo substructure communication. Fach
substracture carries a destimation map and & reception
map. The destination map contains the substructures 1o
which quantities are to be digpasched, and the internal
node numbers to which they correspond. The reception
maps contains the substructurss from which guantities
are to be received, and the internal node numbers o
which they will correspond.
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Steady Hover Prototype

The steady hover {ideal} prototype simply solves
for blade vespomse using a prescribed pressure airload
at a constant cellective angle. The non-linear solution
procedure uses Newton-Raphson outer lerations around
FETL-DP inner solves. The FETLDP inner solves use a
Coniugate Gradient {CG) update in hover. This s ade-
quate as the stiffness matrix is symmetric.

Several initial updates of the stiffness matzix are
necessary $o include the non-linesr siructural stifiness -
which provides the kev extension-bending non-linearity
assoctated with rotation. Figure 13 shows the conver-
genee of this non-linearity in the initial part of the plot.
Around & to 10 iterations are required for a tight con-
vergence. Subsegquently, the rotor stiffness matrices can
be updated only at certain intervals i desired, while us-
ing modified Newton in between, Once the structural
non-linearities are converged, the pressure alrloads are
imposed on the blade. The convergence of the airload it-
erations are shown in the same plot in the right hand side.
The two parts are separated as conceplually these are
fhid-structure Herstions where the geometric stiffpess
need not be updated. The results shown, however, are
with fully updated stiffnesses in every iteration. The db
rection of the pressure airloads Is deformation-dependant
and unknown a-priovi. Thus, equilibriom Herations are
reqguired.

In each ieration, the virtual work is calenlated bhased
on the previous deformation state. An alternative. and
more rigorous, approach is to lnearize the forcing us-
ing imcremental displacements, This leads to a non-
symmetric stiffness contribution, which is however eas-
ity handied by replacing the geometric stiffness J with
L/ +J7) as the role of the stiffness ks onky to converge
the Newton iterations, However, Herations are still nec-

Residual

10 &0 80
Matix-vector mulliplies

20

Figure 16: Convergence of GMRES up-
dates for varfous restart numbers; all cal-
culations use 32 processors.

essary aud therefore we believe the previous configuration
appiroach is more efficient. The relatively large deforme-
tion corresponding to airloads 3 Is shown in Fig, 34,

Within esch Newton iteration iz the Kreviov solver,
FETELDP with CG updates. The convergence criferia ls
set tightly to 10777 for all cases in this stady, Fig 15
shows the convergence of the solver when run on 4 to 48
processors, We will alwayvs show the convergence corre-
sponding to the first Newton ileration as it begins with
a zero guess and takes the most number of iteralions.
The scalability {(fixed problem size) of these caleulations
are examined in more detail in the next section. Here,
we note that the number of iterations increase with an
inerease in the number of processors, but only gradu-
ally -~ the feature of an algorithm where the precon-
ditioned interface problem grows slowly, and only at a
polviogarithmie rate with increase in the muuber of sub-
domains. Physically, it means that the increasing coarse
problem allows a greater transfer of substructure nfor-
mation across the glebal structure.

Transient Forward Flight Prototype

The transient forward fight prototype solves for
blade response using the same set of preseribed progsure
airfoads as in hover, but now the stiffness and forcing val
ues are those that arice out of a single time step In a time-
marching procedure. We consider a Newmark scheimne
with a 57 azimuth step. The control angle varistion is
takert as Gz} = 2% + 5% conp — H¥sin¢. The dynamic
stiffness now contains the complete inertial terms and
non-svmebrie due the gyroscople damping. The VETE
DI inmer solves now use a Generalized Minimum Resid-
ual (GMRES) update.

The matrix structure will be identical in every time
step, therefore, for purposes of scalability study &
enough to consider only one. Tssues related to paralleliza-



tion arise mmediately due to the presence of the Arnoldi
algorithm within GMRES. This issue, its resolution, and
its impact on sealability i any, arve described and stud-
ied i detail in the next section. Unlike UG where sach
update require only two previous updates for construc-
tion, in GMRES, sach update require information from
every previous updates. For example, as shown esrlier
in Fig. 15 i 106 iterations are required, 100 such vec-
tors have to be stored. A standard procedure & to use
a restarted version where only m previous updates are
used at a time. Unce 2 set of m updates are obiained an
estimate of the solution s constructed. The m updates
are then thrown away and the construction of a new set
begins with the current estimate of the solution.

Figure 15 shows that for the small grid size used
here, the convergence pattern ls similar over a broad
renge of restart parameter - even m = § is adequate
to obtain convergence. For purposes of a realistic scala-
bility study, however, we will consider m = 30, 40, and
51, These are deemed adequate for Targe-scale structural
configurations with dense interface matrices,

SCALABILITY OF 3-D ROTOR ANALYSIS

The scalability of the 3-I3 FEM parallel solver is re-
ported here in detail. The first section is relevant to the
steady hover prototype. The Krylov solver uses o CG
update here. The ides of substructure optimality and
definttion of scalability is introduced here. The second
section is relevant to the tramsient forward Hight pro-
wotvpe. The Krvlov solver is equipped with a GMRES
update here.

Steady Hover

7. | FE | Subdem | Coarse | FETLDP | Solver
Ly JPCG total
&6 2 THY 130 s 1G6R
& | 200 463 41 622 118G
121199 246 53 488 TG
16 | 194 i6h 52 361 530
24 1 191 GH 51 @7 416
320196 66 Tl 213 350
48 | 100 34 168 187 365

Table 1 Solver time vs. number of substructures
on a single processor

Consider the grid of size 86 » 4 x 2. I§ is partitioned
into 6 to 4% substructures using & Z-way partitioning,
Le. subwirocture arrangement similar to Fig 9(a} hav-
ing 3% 7 to 24 % 2 blocks. The solver time for each of
these problems are shown in Figo 17, The Importance
of substructuring Is irmmediately apparant. There is &
steep drop in sodution thme with increasing nuisber of
substructures, For any problem of a fived size, & condi-
tion of diminishing return must sventually be reached,
with an optimal manber of substracture producing the

g | FE ! Subdom | Coarse | FETLDP | Selver
L fPCG total

8 1 3267 12180 21.56 94.07 23787

8 124, 57.44 12,33 57.23 12728
1211832 20495 5.8 26,85 5377
16 12.8 10,54 3.64 14.93 2818
241 RI8 4.16 2.71 796 1480
32 1 6.01 22y 2.492 5.7 14.85
48 | 4.24 (.48 5.62 515 11.70

Tabte 11 Solver thme vs. number of processors;
each processor contains one substructure

minimum solation time for that problem size. We shaill
call this the subsfruciure oplimality number. For this
problem it i3 32. Note however that the rise in solution
time beyond the optimality point is not pearly as siesp
as is decline prior to it, and there is a large region over
which it remains flat. For this problem, this region
between 16 Lo 48 substructures. This flat region is & gift
of Herative substructoring. It is shown later that this re-
gion is sensitive to the partitioning and corner selection
procedure. A good partitioner and corner selector will
keep this region Hat, & poor one will produce a steep rise.
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Pigure 17 Solver time vs. number of
substructures for calculations on a sin-
gle processor.

A parallel implemendation solves sach substruciure
on a separate processor. Note that, it s important to
caleulate the speed-up oblained, using the single proces-
sor time with the same number of substructures, That
is, the sobver time with, say 32 processors, must be com-
pared with the corresponding solver time on a single pro-
cessor thab uses 32 substractures. This is to ensure that
comptations of the sarme complexity are compared, oth-
erwise, the speed-up is contaminated with the benefits of
substracturing and & super-linear number s always ob-
tained. This is because using 32 substructures on a sin-
gle processor by itself reduces the solver time by more
than 32 ~ & fzef that hes nothing to do with paralisliza-
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Figure 18 Parallel speed-up for caleula-
tions on multiple processors; each sub-
structure solved in a separate processor.
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Figure 19 Effect of grid partitioning and
corner selection on solver time as a func-
tion of number of substructures; calcula-
tiong on a single processor.
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Figure 20: Effect of grid partitioning and
corner selection on parallel speed-up for
calculations on multiple processors,
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Figure 21: Two different problem sizes
with the same substructure optimality;
solver time vs. number of substructures
on a single processor,



tion but substructuring itself. The parallel spesd-up is
shown in Fig. 18, Even for this fixed problem size, it
has a perfectly lnear trend up to the point of substruc
ture optimality. Note that the point corresponding to 32
processors has nothing to do with the point correspond.-
ing to 16 processors. Indeed, the 32 processor run takes
only 1.8 whereas the 16 processor run takes 29.2¢, Le,
tess than half the time, What the speed-up plot shows is
that 32 processor ran the problers exactly 32 times faster
compared to & single processor using 32 substructures.
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Figure 22: Parallel speed-up for problem
gizes with the same substructure opti-
mality; solver time vs. number of sub-

structires.
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Figure 23 Two different problem sizes

with the same substructure optimality;
solver time vs. oumber of substructures
on a single processor.

The drop off i scealability bevond 32 procsssors is
studied using the exact timings for the different parts
of the computation., The timings for the single proces-
sor and parallel caleulations are given in Tables 10 and
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Figure 24: Parallel speed-up for problem
sizes of same substructure optimality.

11, In the tables, ‘FE’ refers to the time taken to con-
struct the structural matrices, ‘Solver total’ refers to the
total solver time. The two together constitute the fo-
tal simmiation time. The ‘Solver total’ time consists of
three parts: {1} ‘Subdom LU time, which refers to the

subidomain factorization, {2} ‘Coarse’ thme, which refers

b

to the coarse problem factorization and comumunication,
and (3} the ‘FETLDP/PCG thme, refers to the Krylov
solver time. Note that the later includes the computation
and cotmmunication costs of the residual, sreconditioner,
and matrix-vector multiphes, and the addivions! commmu-
wications requived for the updates. The communications
costs are, of course, incurred only during the parallel cal-
culations.

From Table 10, which shows the single processor
timings, the reazon behind the fat region in Fig, 17 is
clear. The growth in the coarse problem is offset by the
reduction in the Krvlov solver thme. This I8 as expected
- ag the purpose of the coarse problem s precisely that
~ but the main point is that the coarse solver should be
just enocugh to serve this purpose and no larger, so that
the substructure optimality is pushed to as high a pro-
epssor number as possible. Bevond the optimality point,
any growth in the coarse problem s an indicator of in-
ereased communication cost for the parallel mplemen-
tation. Note that the cosrse problem is solved in every
processor and as such, requires & global communication.
The drop off in Fig. 18 is a direct consequence of this
comtunication cost, To summarize, a key objective of
the coarse problem should be to keep the growth beyond
substructure optimality to as gradus! a3 increase as pos-
sible. This has no bearing upon scalability with respect
to problem size, but serves to extend linear speed-up for
a fixed problem size fo as high a processor number as
passible.

We illustrate the huportance of the coarse prob-
I with s worse partitioning.  The same problem
when treated with a I-way partitioning as Hlusirated in



Figs. 8{cy, 9{d}, and 10, generates a timing and scala-
bility plot as shown in Figs. 19 and 20, The Z-way par-
titioning vesults are also plotted for comparison, Clearly,
from Fiz, 18, the same problem now has & substructure
optimality of 16, a8 opposed to 32, A good parallel im-
plementation should gaurantee a linear speed-up at least
upto 18 processors, Sealability bevond this number is ex-
pected o be affected adversely by communication costs
of the conrse problem. This is exactly what Is observed
in Fig, 20

The Hoear speed-up range is not 2 funetion of prob-
lern size but of substructure opthmality. For example,
Figs. 21 and 22, compares the ¢ingle processor solution
time and parallel speed-up of a bigger problem of size
96 % 4 w 4. From the single processor solution time, {4
is clear thal the substructure optimality iz sl 32, As
a result, the linear spead-up range still extends only up
to 32, The same conclusions hold for very small problem
sizes, as shown in Figs. 23 end 24, The smallest grid of
48 % 4 % 2 still shows a linear speed-up up to 24 processors
equal to its value of substructure optimality. In the same
manner as & zrid of 48 » 4 % 4 which is twice its size.

In summary, for a given problem size, the present
solver shows a perfectly linear speed-up ~ for at least pe
many processors as its substructure optimality,. To ex-
tend this Hnear speed-up renge, a smaller coarse problem
is required. Anp example of such a selection was shown
earfier in Fig. 12,

The scalability with increasing problem size i il
fustrated in Table 12, Problem 2 has twice the size of
Problem 1. Problem 3 has same size as Problem 2, only
different grid characteristics. Problem 2 and 3 therefore
have similar solver times, up to substracture optimality
which sets in at 24 processors for Problem 3. The timings
of Problem 1 and Preblem 2 provide a simple illustration
of sealability with increasing size. Because Problem 2 g
twice the size, twice the mumber of processors provide an
approximately same solve time. For example, Problem
2 on 12 processors take similar time as Problem 1 on 6.
Problem 2 on 16 take similar time a8 Problem | on 8.

fiy, | Problem 1 | Problem 2 | Problem 3
B xdx? WwdwZ 48 x4dxd
6 51.52 237.87 232.00
& 28.34 127.28 126.70
12 13.07 53.73 55.43
16 822 20,19 J2.72
24 5.73 14.59 21.68
33 574 10.85 2228
48 G.62 11.70 38.89

Tahle 12: Paralle]l solver times showing scalabil-
ity with respect to problem size up to limits of
substructure optimality.
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Figure 25 Solver time vs. number of sub-
structures on a single processor; FETT-
DP/PGMRES,

Transient Forward Flight

The same conclusions on effective partitioning and
substructure optimality are carried over in this section.
These results, which are very similar to those shown in
hover, are not repeated. The scalability resulis of a single
grid size 96 % 4 % 2 {(with substructure optimalily of 32} is
presented here. The resulis for the other grids compare
similarly to hover results.

1y | Modified GE | Classical GS
| with Reorth.

& 19408 196,17

& 10,47 106,47

12 41.69 45.43

i6 23.92 24.24

24 12.33 1177

32 8.8% r.A1

48 1G.67 10,64

Table 13 Parallel FETLDP/PGMRES solver
times (secs.} with Modifled Gram-Schimdt and
Classical Gram-Schimdt with Reorthogonaliza-
tion based Arnoldi procedures.

The scalability of the parallel FETLDP/PGMRES
sobver invelving the non-symimelric matrices in forward
flight chows as linear a trend as those of the FETL-
DP /PG solver in hover. The single processor timings
are shown in Fig. 25, Al caleulstions use the Heorthogo-
nalized Classical Gram-Schimdt Arnoldi procedure. The
increasing restart parameters all show the same thmings
on 4 single processor — as expected, because their affect i
only on memory — but incuwrr increasing communeation
costs for a paraliel celoulation. However, for the small
size problem considered here, there ig no discernable dif
ferences between the three versions even in parallel, Asa
rasult, the sealability plot shown in Fig. 26 is identical for
all three cases. Indesd, even the Modified Gram-Schimdt
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Figure 26 Parallel speed-up of FETI-
DP/PGMRES solver using Classical
Gram-Smidt with Heortheogonalization
based Arnoldi procedure.

procedure show the same scalability behavior. The lat-
ter is expecied to be drastically inferior for large subdo
main problems. Note howsver, regardless of sealability,
the actual solution times for Reorthogonalized Classical
Gram-Schimdt are by themselves lower compare to the
Modified Gram-Schimdt. This difference s expected to
he drasiic for large scale problems. This trend i3 clear in
Table 13, where the former provides a marginally faster
timing trend, Given the small size of the problem, a
comerete conclusion is still premature,

CONCLUDING OBSERVATIONS

A 3D FEM analysis for rotary wing dynamics was
forrmulated with emphasis on the inertial terrms unique
fo rotoreraft, A dual primal Berastive substructuring
based Kryloy solver was developed for a fully paraliel
solution pré?ﬁ%m!. The FETI-DP domain decomposition
algorithm wWas used for this purpose. The algorithm was
equippedy with & GMRES update, in addition to its fra-
ditlonal” CC based implementation, due to the unique
non-symmettie nature of the rotary wing inertial terms,
The sealability of this solver was studied In detall both
for hover and transient forward 8ight prototypes. The
key components of rotorcralt analysis: multibody dy-
namics, periodic response solution, blade airloads, and
hence trim were not part of this study. The focus was
purely on the scalability of a 3-D FEM based large scale
structural dynamic analysis, That is the key contribu-
tion of this paper. The following are the key conclusions
of this study.

Key conclusions

b Given a fxed problem size, there I alwavs an op-
timal pumber of mbstructures or subdomains into
which the problem can be gub-divided so as o re
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Figure 27: Parallel speed-up of FETL-
DP/PGMRES solver using Modified
Gram-Smidt based Aruveldi procedure.

quire the minlmam solution time, This subdomaln
optimality grows with problem size. Beyond this
optimality, the benefits of smaller sized subdomains
are offset by the increasing interface. This hias less
bearing on scalability but iz oritical for the actual
solution time.

. The presend implementation of the 30 FEM rotor

code is scalable and shows a linear gpeed-up. That
i, an p-processor calculation with a separate sub-
structure in sach processor takes 1/p the time com-
pared to a single processor with psubstructures. [t
alse scales with problem size. That is, & n-times
farger problem takes similar time with n % p proces-
sors. For & fixed problem size, a drop off in scalabil-
ity eventually oceurs - but not before the subdomain
optimality number is reached. At that point, there
iz no reason (0 Qse ANy more processors — unless a
larger problem is attacked — in which case, Hnear
speed-up s restored agaln up to the new optimam.
However, even if move processors than optimum ig
used, the scalability only reaches a platesn, and does
not show g dramatic drop off.

. This platean stems from the nature of iterative sub-

structuring. Unlike classical substructuring, here,
there is & flat region in thme vs. substructure curve,
stich that the penalty incurred by using more than
the optimum nuwwber of processors s very grad-
usl,  On the other hand, the difference between
the platean and the linear speed-up line sterns from
two practical considerations, First, the subdomain
1o subdomain communication cost, and second, the
global coarse problem communication cost.

. The first penally is a minor issue that cannot be

avolded, It can be minimized by by minimizing the
mumber of syncronization points during the Krylov
updates, This is pertinent more to GMHEES where



the modified Gram-Semidt algorithm ~ the most sta-
ble procedure for generating the Krylov basis - in-
currs a significant communication cost. In this paper
we have compared the modified Gram-Semidt with
a cheaper classical Gram-Semidt. The later requires
an additional re-orthogonalizing step that iz optional
and i carried out only when necessary.

. The second penalty ts a major issue. The size of the
coarse problem is a key driver of scalability, The
rule Is to select corners which are commeon to more
than iwo subdomains., In 31 this generates a very
large mumber. In addition, depending on the par-
titioning, there may not be any corner node al alll
The key ides is that the number of corner nodes can
vary depending on partitioning but they must be
selected to ensure rmilily of the subdomain kernels,
Thus, & special, smart partitioner is needed, that
mrinimizes the selection of corner nodes while engur-
g the above requirement. Not just any partitioner
will do. In the present paper shis task has been eas-
ity accomplished manually, due to the simple nature
of the geometry and grid.

[y

. Finally, we note, that the theoretical condition num-
ber estimates and proof of optimality in dowsin de-
composition is based on the assumption of symmet-
rie and coercive operators with CG updates, They
are less developed for non-symmetric systems — and
are usually based on the sssumption of the domi-
nanes of the symmetric operator. One approach is
to build upon algorithms that are provably optimal
for the former to extend them to the later, This is
the procedure followed in this paper. We firsi ver-
iy the performance of the slgorithms in ideal hover
We then extend them to real forward flight condi-
tions, We equip FETEDP with GMRES updates
for this purpose and demonstrated optimal conver-
genee scalability patierns computationally. We do
net attempt to provide formal theoretical estimates
in this paper.

Thrust Areas for Future Research

A guggested lst for future directions of this research
is given below subdivided into three categories.
Fundamental Research

1. Scalable solution for periedic dynamics - temporal
domain decomposition for boundary value problems
in thme.

. 3D FEM / multibody dynamics coupled analvsls -
mechanisms and methodology.
Applied Research

1. Locking-free olements, hievarchical elements, node-
lose elements 1o facilitate FEM / multibody dynam-
iea architechiure,
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Exact and generic 3-10 Fluid-Structure interfaces.

Exact dalte coupling procedures for frim solution in
level and turning fHeht.

. Smart substructuring - efficient corner node selec-
tion, interface localization, and nodal reordering.

Interfaeing with 3-13 solid geometry and grid tools.
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